milvus集成OpenAI实现语义搜索

内容目录

概述

在这篇文章中,我们来了解下如何使用milvus集成OpenAI来实现高质量语义搜索。
主要方面:

  1. 通过OpenAI生成文本Embedding
  2. 使用milvus进行向量搜索

1. 通过OpenAI生成文本Embedding

首先,如果我们需要使用OpenAI API那么就需要获取OpenAI API密钥,然后使用python编码利用OpenAI Embedding API实现Embedding生成,示例代码如下:

# 在执行生成Embbedding之前需要正确设置OpenAI的密钥
def embed(text):
    return openai.Embedding.create(
        input=text, 
        engine=OPENAI_ENGINE)["data"][0]["embedding"]

2. 使用milvus进行向量搜索

接下来,我们将OpenAI生成的Embedding写入到milvus向量数据库以支持检索。这个示例是milvus官网提供的,是milvus结合OpenAI实现书名搜索,具体步骤如下:

  1. 连接milvus向量数据库
  2. 创建milvus collection
  3. 创建milvus索引
  4. 从csv文件中读取数据并调用OpenAI生成Embedding
  5. Embedding写入milvus
  6. 将用户搜索文本调用OpenAI生成Embedding
  7. 根据用户Embedding搜索milvus

2.1 安装milvus python依赖

pip install openai
pip install pymilvus

2.2 实现milvus语义搜索

首先引入依赖模块:

import csv
import json
import random
import openai
import time
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility

# Extract the book titles
def csv_load(file):
    with open(file, newline='') as f:
        reader=csv.reader(f, delimiter=',')
        for row in reader:
            yield row[1]

FILE = './content/books.csv'  # Download it from https://www.kaggle.com/datasets/jealousleopard/goodreadsbooks and save it in the folder that holds your script.
COLLECTION_NAME = 'title_db'  # Collection name
DIMENSION = 1536  # Embeddings size
COUNT = 100  # How many titles to embed and insert.
MILVUS_HOST = 'localhost'  # Milvus server URI
MILVUS_PORT = '19530'
OPENAI_ENGINE = 'text-embedding-ada-002'  # Which engine to use
openai.api_key = 'sk-******'  # Use your own Open AI API Key here

# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)

# Remove collection if it already exists
if utility.has_collection(COLLECTION_NAME):
    utility.drop_collection(COLLECTION_NAME)

# Create collection which includes the id, title, and embedding.
fields = [
    FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
    FieldSchema(name='title', dtype=DataType.VARCHAR, description='Title texts', max_length=200),
    FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
]
schema = CollectionSchema(fields=fields, description='Title collection')
collection = Collection(name=COLLECTION_NAME, schema=schema)

# Create an index for the collection.
# Create an index for the collection.
index_params = {
    'index_type': 'IVF_FLAT',
    'metric_type': 'L2',
    'params': {'nlist': 1024}
}
collection.create_index(field_name="embedding", index_params=index_params)

# Extract embedding from text using OpenAI
def embed(text):
    return openai.Embedding.create(
        input=text, 
        engine=OPENAI_ENGINE)["data"][0]["embedding"]

# Insert each title and its embedding
for idx, text in enumerate(random.sample(sorted(csv_load(FILE)), k=COUNT)):  # Load COUNT amount of random values from dataset
    ins=[[idx], [(text[:198] + '..') if len(text) > 200 else text], [embed(text)]]  # Insert the title id, the title text, and the title embedding vector
    collection.insert(ins)
    time.sleep(3)  # Free OpenAI account limited to 60 RPM

# Load the collection into memory for searching
collection.load()

# Search the database based on input text
def search(text):
    # Search parameters for the index
    search_params={
        "metric_type": "L2"
    }

    results=collection.search(
        data=[embed(text)],  # Embeded search value
        anns_field="embedding",  # Search across embeddings
        param=search_params,
        limit=5,  # Limit to five results per search
        output_fields=['title']  # Include title field in result
    )

    ret=[]
    for hit in results[0]:
        row=[]
        row.extend([hit.id, hit.score, hit.entity.get('title')])  # Get the id, distance, and title for the results
        ret.append(row)
    return ret

search_terms=['self-improvement', 'landscape']

for x in search_terms:
    print('Search term:', x)
    for result in search(x):
        print(result)
    print()

将这段代码保存后,在python3环境中执行:

python filename.py

执行完成后控制台输出内容;

Search term: self-improvement
[46, 0.37948882579803467, 'The Road Less Traveled: A New Psychology of Love  Traditional Values  and Spiritual Growth']
[24, 0.39301538467407227, 'The Leader In You: How to Win Friends  Influence People and Succeed in a Changing World']
[35, 0.4081816077232361, 'Think and Grow Rich: The Landmark Bestseller Now Revised and Updated for the 21st Century']
[93, 0.4174671173095703, 'Great Expectations']
[10, 0.41889268159866333, 'Nicomachean Ethics']

Search term: landscape
[49, 0.3966977894306183, 'Traveller']
[20, 0.41044068336486816, 'A Parchment of Leaves']
[40, 0.4179283380508423, 'The Illustrated Garden Book: A New Anthology']
[97, 0.42227691411972046, 'Monsoon Summer']
[70, 0.42461898922920227, 'Frankenstein']

3. milvus Standlone Docker Compose Yaml文件

version: '3.5'

services:
  etcd:
    container_name: milvus-etcd
    image: quay.io/coreos/etcd:v3.5.5
    environment:
      - ETCD_AUTO_COMPACTION_MODE=revision
      - ETCD_AUTO_COMPACTION_RETENTION=1000
      - ETCD_QUOTA_BACKEND_BYTES=4294967296
      - ETCD_SNAPSHOT_COUNT=50000
    volumes:
      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
    command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd

  minio:
    container_name: milvus-minio
    image: minio/minio:RELEASE.2023-03-20T20-16-18Z
    environment:
      MINIO_ACCESS_KEY: minioadmin
      MINIO_SECRET_KEY: minioadmin
    volumes:
      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
    command: minio server /minio_data
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
      interval: 30s
      timeout: 20s
      retries: 3

  standalone:
    container_name: milvus-standalone
    image: milvusdb/milvus:v2.2.13
    command: ["milvus", "run", "standalone"]
    environment:
      ETCD_ENDPOINTS: etcd:2379
      MINIO_ADDRESS: minio:9000
    volumes:
      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
    ports:
      - "19530:19530"
      - "9091:9091"
    depends_on:
      - "etcd"
      - "minio"

networks:
  default:
    name: milvus

4. 总结

通过结合OpenAI生成的Embedding和milvus的高效向量搜索,我们可以搭建强大的语义搜索引擎,并且可以在很多场景中使用(比如:文本检索、问答系统、推荐系统等)。

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

滚动至顶部